Spin-off ATOP project by Ronald, March 19, 1999.

List of used constants:

- Global average of gravity at mean sea level: $g_0 = 9.80665 \text{m s}^{-2}$
- Standard temperature: $T_0 = 273.15$ K
- Boltzmann's constant: $k = 1.3807 \cdot 10^{-23} \text{J K}^{-1} \text{molecule}^{-1}$
- Standard pressure: $p_0 = 1.01325 \cdot 10^5 \text{Pa}$
- Avogadro's number: $N_A = 6.0220 \cdot 10^{23}$
- Mean mass of air (with background concentration of water): $M_A = 28.94 \cdot 10^{-3} \text{kg}$
- • Specific gas constant for air : $R = \frac{kN_A}{M_A} = 287.3 \, \mathrm{J \, kg^{-1} K^{-1}}$

TOTAL COLUMN CALCULATION

Objective

Computation of the total column amount of a trace gas out of a vertical profile.

Algorithm description

The profile between level 0 and N can be integrated, using:

$$\texttt{COLUMN} = 10 \cdot \frac{RT_0}{g_0 p_0} \cdot \sum_{i=1}^{N-1} 0.5 (\texttt{VMR}(i) + \texttt{VMR}(i+1)) (p_i - p_{i+1})$$
 (0.1)

where p is the pressure in hPa, VMR the volume mixing ration in ppm and COLUMN is the trace gas column amount in Dobson Units.

UNIT CONVERSION

Objective

The objective of this algorithm is to convert different units into each other. The considered units are: for trace gas column amounts: DU, cm⁻²; for pressure/height: Pa, hPa, m; for trace gas profiles: vmr (ppm), partial pressure (mPa), number density (cm⁻³).

Algorithm description

Conversion from pressure to geopotential height: To go from pressure p to geopotential height Z:

$$Z = \frac{R}{g_0} \int_{p'=p}^{p_s} T(p') d\ln p' , \qquad (0.2)$$

where R is the gas constant for air, g_0 is the global average of gravity at mean sea level, p_s is the pressure at Z = 0, and T is the temperature. The unit of the pressure has to be Pa. The resulting geopotential height is given in m. An estimate is needed for the surface pressure p_s , and a profile of the temperature as a function of the pressure T(p) between p_s and p. If the surface pressure p_s and p temperatures are given at pressures between p_s and p, approximate the above integral by:

$$Z = \frac{R}{g_0} \sum_{i=1}^{n} T(p_i) (\ln p_{i+1} - \ln p_{i-1})/2 , \qquad (0.3)$$

where $p_{n+1} = p$.

Conversion from geopotential height to pressure: To go from geopotential height Z to pressure p:

$$p = p_s \exp\left(-\frac{g_0}{R} \int_{h=0}^{Z} \frac{1}{T(h)} dh\right) , \qquad (0.4)$$

where R is the gas constant for air, g_0 is the global average of gravity at mean sea level, p_s is the pressure at Z=0, and T is the temperature. The unit of the geopotential height has to be m. The resulting pressure is given in Pa. An estimate is needed for the surface pressure p_s , and a profile of the temperature as a function of the geopotential height T(h) between 0 and Z. If the surface pressure p_s and n temperatures are given at geopotential heights between 0 and h, approximate the above integral by:

$$p = p_s \exp\left(-\frac{g_0}{R} \sum_{i=1}^n \frac{1}{T(h_i)} (h_{i+1} - h_{i-1})/2\right), \qquad (0.5)$$

where $h_{n+1} = h$ and $h_0 = 0$.

Conversion of trace gas column amounts:

• Conversion from DU to cm⁻²:

To go from a trace gas amount $x_{\rm DU}$ in DU to a trace gas amount $x_{\rm cm^{-2}}$ in cm⁻²:

$$x_{\rm cm^{-2}} = 10^{-9} \frac{p_0}{kT_0} x_{\rm DU} ,$$
 (0.6)

where k is Boltzmann's constant, T_0 is the standard temperature and p_0 is the standard pressure.

• Conversion from cm⁻² to DU:

To go from a trace gas amount $x_{\rm cm^{-2}}$ in cm⁻² to a trace gas amount $x_{\rm DU}$ in DU use the equation

$$x_{\rm DU} = 10^9 \frac{kT_m}{p_0} x_{\rm cm^{-2}} , \qquad (0.7)$$

where k is Boltzmann's constant, T_0 is the standard temperature and p_0 is the standard pressure.

Conversion of trace gas profiles:

• Conversion from vmr to partial pressure :

To go from vmr in ppm to partial pressure p_{part} in mPa use the equation

$$vmr = 10^3 \frac{p_{part}}{p} \tag{0.8}$$

where p is the pressure in Pa at the specified point. When the pressure is not given, use the conversion from geopotential height to pressure to calculate the pressure at the specified point.

• Conversion from partial pressure to vmr:

To go from the partial pressure p_{part} in mPa to vmr in ppm use the equation

$$p_{\text{part}} = 10^{-3} \text{vmr} \cdot p \tag{0.9}$$

where p is the pressure in Pa at this point. When the pressure is not given, use the conversion from geopotential height to pressure to calculate the pressure at the specified point.

• Conversion from partial pressure to number density:

To go from partial pressure $p_{\rm part}$ in mPa to number density n in cm⁻³ use the equation

$$n = 10^{-9} \frac{p_{\text{part}}}{kT} \tag{0.10}$$

where k is Boltzmann's constant and T is the temperature in Kelvin at this point.

• Conversion from number density to partial pressure :

To go from number density n in cm⁻³ to partial pressure p_{part} in mPa, use the equation

$$p_{\text{part}} = 10^9 nkT \tag{0.11}$$

where k is Boltzmann's constant and T is the temperature in Kelvin at this point.

• Conversion from vmr to number density:

Use the conversion from number density to partial pressure and subsequently the conversion from partial pressure to number density.

• Conversion from number density to vmr:

Use the conversion from number density to partial pressure and subsequently the conversion from partial pressure to number density.